SVM Model Selection for Microarray Classification

نویسنده

  • David A. Peterson
چکیده

Support vector machines (SVMs) [4] are gaining broad acceptance as state-of-the-art classifiers for microarray data analysis [3]. However, most studies that use SVMs to predict sample class consider only a small subset of SVM kernels and parameters. The effect of the kernel type and parameter values is usually not studied in microarray classification. The choice of kernel and classifier parameters is a form of model selection. Although the machine learning community has extensively considered model selection with SVMs [2], optimal model parameters are generally domain-specific. The present study evaluates the impact of kernel type and parameter values on the accuracy with which a SVM can classify microarray data. We hypothesized that classification accuracy would vary with the kernel type and parameter values, and that the optimal parameter values would vary with the kernel type.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine

We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...

متن کامل

Identification of Alzheimer disease-relevant genes using a novel hybrid method

Identifying genes underlying complex diseases/traits that generally involve multiple etiological mechanisms and contributing genes is difficult. Although microarray technology has enabled researchers to investigate gene expression changes, but identifying pathobiologically relevant genes remains a challenge. To address this challenge, we apply a new method for selecting the disease-relevant gen...

متن کامل

SFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy

 In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....

متن کامل

Microcanonical Annealing and Threshold Accepting for Parameter Determination and Feature Selection of Support Vector Machines

Support vector machine (SVM) is a popular classification technique with many diverse applications. Parameter determination and feature selection significantly influences the classification accuracy rate and the SVM model quality. This paper proposes two novel approaches based on: Microcanonical Annealing (MA-SVM) and Threshold Accepting (TA-SVM) to determine the optimal value parameter and the ...

متن کامل

Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method

Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...

متن کامل

Prediction of blood cancer using leukemia gene expression data and sparsity-based gene selection methods

Background: DNA microarray is a useful technology that simultaneously assesses the expression of thousands of genes. It can be utilized for the detection of cancer types and cancer biomarkers. This study aimed to predict blood cancer using leukemia gene expression data and a robust ℓ2,p-norm sparsity-based gene selection method. Materials and Methods: In this descriptive study, the microarray ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004